
A Prototype Quantitative Precipitation Estimation Algorithm for Operational S-Band
Polarimetric Radar Utilizing Specific Attenuation and Specific Differential Phase.

Part II: Performance Verification and Case Study Analysis

STEPHEN B. COCKS, LIN TANG, PENGFEI ZHANG, ALEXANDER RYZHKOV,
BRIAN KANEY, AND KIMBERLY L. ELMORE

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and

NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

YADONG WANG

Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville,

Edwardsville, Illinois, and Cooperative Institute for Mesoscale Meteorological Studies, University

of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

JIAN ZHANG AND KENNETH HOWARD

NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

(Manuscript received 10 April 2018, in final form 23 February 2019)

ABSTRACT

The quantitative precipitation estimate (QPE) algorithm developed and described in Part I was validated

using data collected from 33Weather Surveillance Radar 1988-Doppler (WSR-88D) radars on 37 calendar

days east of the Rocky Mountains. A key physical parameter to the algorithm is the parameter alpha a,

defined as the ratio of specific attenuationA to specific differential phaseKDP. Examination of a significant

sample of tropical and continental precipitation events indicated that awas sensitive to changes in drop size

distribution and exhibited lower (higher) values when there were lower (higher) concentrations of larger

(smaller) rain drops. As part of the performance assessment, the prototype algorithm generated QPEs

utilizing a real-time estimated and a fixed a were created and evaluated. The results clearly indicated

;26% lower errors and a 26%better bias ratio with theQPE utilizing a real-time estimated a as opposed to

using a fixed value as was done in previous studies. Comparisons between the QPE utilizing a real-time

estimated a and the operational dual-polarization (dual-pol) QPE used on the WSR-88D radar network

showed the former exhibited;22% lower errors, 7% less bias, and 5% higher correlation coefficient when

compared to quality controlled gauge totals. The new QPE also provided much better estimates for

moderate to heavy precipitation events and performed better in regions of partial beam blockage than the

operational dual-pol QPE.

1. Introduction

Anumber of studies have examined the use of specific

attenuationA to estimate rainfall. Ryzhkov et al. (2014)

examined the feasibility of utilizing A for estimating

rainfall rain rates R(A). Their study developed the

methodology to estimate rainfall via A for X-, C- and

S-band radars and used the ZPHI method (Bringi et al.

1990; Testud et al. 2000; Bringi et al. 2001) for estimating

the A fields. Key to this technique was the estimation of

the path integrated attenuation, which is related to the

product of the span of differential phase, and the pa-

rameter a defined as the ratio ofA to specific differential

phase KDP, along a radar radial [their Eq. (1)]. Using a

small sample of cases, Ryzhkov et al. (2014) showed that

the parameter a could vary in different rainfall regimes.

To generateR(A) estimates, they assumed a fixed a that

was representative of the rainfall regime type present

(continental or tropical). Their R(A) comparisons with

gauges for a small sample of cases indicated the poten-

tial for significant improvement utilizing this technique.
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Giangrande et al. (2014) and Boodoo et al. (2015) ex-

plored R(A) applications for C-band radars while

Diederich et al. (2015) explored applications for X-band

radars. In all of these studies, the parameter a was as-

sumed to be insensitive to the drop size distribution

(DSD) variability for a given case.

The first paper of this series (Wang et al. 2019, here-

after Part I) provides the description of an operational

prototype quantitative precipitation estimate (QPE)

algorithm for S-band radars utilizing specific attenuation

A that is an extension of the technique developed by

Ryzhkov et al. (2014). The paper demonstrates that the

parameter a can exhibit significant variability within

tropical and continental rainfall events. This motivated

the development of a technique to estimate the net

a for the radar field of view (FOV) via the slope of the

ZDR dependence on Z for each 0.58 tilt. Because A

cannot be reliably estimated in mixed-phase or frozen

precipitation, Part I used rain rates estimated via spe-

cific differential phase KDP in regions where hail was

likely (reflectivity Z . 50dBZ). Further, they used

model sounding data to diagnose the height of the

melting layer to mitigate any QPE impacts caused by

melting hydrometeors.

This paper, the second of the series, assesses the

performance of the prototype QPE algorithm using

S-band radar data collected from a large number of

warm season precipitation events. It will further refine

the typical values of a for a significant number of

tropical and continental rainfall events. Using the

prototype R(A) algorithm developed in Part I, QPEs

generated using a fixed a and a real-time estimated

a are compared to quality controlled gauge data to

determine which produces the more accurate rainfall

estimates. The R(A) QPEs performance will then be

compared to that of the operational dual-polarization

(dual-pol) QPE algorithm which utilizes R(Z, ZDR)

for pure rain and R(KDP) for rain mixed with hail

(Giangrande andRyzhkov 2008; Berkowitz et al. 2013).

The performance comparisons will utilize the software

infrastructure and archived gauge data provided by

theMulti-RadarMulti-Sensor (MRMS) system (Zhang

et al. 2016). The MRMS platform is perfectly suited

for a large-scale validation of new hydrometeorological

algorithms as it allows for the quick and effective as-

sessment of a large number of cases in a relatively short

period of time.

The paper is organized as follows: section 2 out-

lines the validation methodology, and section 3

documents the median value of a for a significant

sample of continental and tropical precipitation

systems. Section 4 compared the performance of the

two R(A) QPE versions with that of the operational

dual-pol QPE, and the summary and conclusions are

included in section 5.

2. Data and methodology

Next Generation Weather Radar (NEXRAD) level

II data were collected from 51 precipitation events on

37 calendar days from 33 Weather Surveillance Radar-

1988 Doppler (WSR-88D) radars east of the Rocky

Mountains as shown in Fig. 1. Nonmeteorological

echoes were removed via a quality control algorithm

that utilized dual-pol cross-correlation coefficient rHV

data and a set of heuristic rules (Tang et al. 2014).

Radial profiles of specific attenuation were estimated

from radial profiles of Z and the total span of differ-

ential phase as determined by Eqs. (3)–(5) in Part I.

Two R(A) QPEs were generated utilizing the pro-

totype R(A) algorithm developed in Part I: one that

used a fixed value of a [R(A)fix_a] and one that utilized a

real-time estimated a [R(A)adj_a] for each 0.58 tilt during
the 24-h period evaluated. For the R(A)fix_a QPE, a was

set equal to 0.015 dB per degree, the value typically used

for continental rainfall which is common across the

contiguous United States. Rain rates were calculated

using theR(A) andR(KDP) power laws given by Eqs. (9)

and (11) in Part I for Z # 50dBZ and Z . 50dBZ,

respectively.

Point-to-point comparisons of R(A) QPE with 24-h

and hourly gauge totals were used to assess its perfor-

mance. A number of factors were taken into account for

this type of assessment: radar-derived precipitation es-

timates may be impacted by ground clutter, blockage,

nonmeteorological echoes, increased sample volumes

at greater distances, beam overshoot, bright band ef-

fects, improper calibration, and the use of improper

reflectivity-to-rain rate R(Z) relationships (Steiner et al.

1999; Zhang et al. 2012; Smith et al. 1996; Zhang and Qi

2010; Krajewski et al. 2010; Droegemeier et al. 2000).

Gauge totals may be biased by orifice blockages, poor

site placement, undercatch due to wind, power outages

preventing data transmission, mechanical malfunctions,

telemetry and transmission problems (Sieck et al.

2007; Fiebrich et al. 2010; Wilson and Brandes 1979;

Martinaitis 2008; Groisman and Legates 1994; Kim et al.

2009). Hence, precipitation estimates were validated

against a combination of quality controlled Community

Collaborative Rain, Hail and Snow Network (CoCoRaHS;

Reges et al. 2016) andHydrometeorological Automated

Data System (HADS) rain gauges. Statistical measures

used in the evaluations were mean bias ratio, defined as

the ratio of the QPE estimate to the gauge total, root-

mean-square error (RMSE), mean absolute error (MAE),

and correlation coefficient.
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3. Median a for tropical and continental
precipitation systems

A key for accurate estimation of specific attenuation

A along the radial is the optimal choice of the param-

eter a, defined as the net ratio of A to KDP along the

propagation path, as part of the path-integrated attenua-

tion (PIA) calculation as discussed by Ryzhkov et al.

(2014). Ryzhkov et al. (2014) noted that A is directly

proportional to a, hence, obtaining a good estimate of a is

of critical importance for good-quality rainfall estimates

from the R(A) relation. Both Ryzhkov et al. (2014) and

Part I noted that the parameter a is generally quite dif-

ferent in continental and tropical precipitation systems.

In our study, we use a large sample of tropical and con-

tinental precipitation events to determine the median

a values for the two rain types. Using 0.58 tilts where sig-

nificant radar echoes were present, the median a was cal-

culated using 9 days of tropical (5115 tilts) and 13 days of

continental (5733 tilts) precipitation events listed in Tables

1 and 2. The criteria used to distinguish between tropical

and continental precipitation events were the following: 1)

tropical eventswere associatedwith tropical cyclones and/or

slowmoving upper-level troughs that occurred over or near

the coastline (see Table 1) and 2) continental events were

generally mesoscale convective systems (MCSs) associated

with more progressive upper level troughs/jets, significant

numbers of severe weather reports and, in all but one case,

occurred well away from the coastline (see Table 2). Our

statistical analysis indicates that the median a for conti-

nental events was 0.018 dB per degree while for tropi-

cal events median a was 0.028 dB per degree. The

median tropical a obtained for tropical events was

quite similar to that reported by Ryzhkov et al. (2014)

(0.030 dB per degree). The median continental a was

a little higher than the aforementioned study likely

because the prototype algorithm in Part I does not

allow a, 0.015 dB per degree. The underlying reason

for the difference in a between the two rain types is

that in tropical rain, A is high but KDP is low due to the

abundance of small drops having a nearly spherical shape

resulting in a higher A/KDP ratio as opposed to the con-

tinental rain commonly dominated by large nonspherical

drops originating from melting graupel and hail.

Apart from the general difference in the magnitude of

a in tropical and continental rain, Part I demonstrated

significanta variability duringboth tropical and continental

precipitation events. This dictated the need to update the

optimal value of the factor a on a scan-to-scan basis and

motivated Wang et al. in Part I to develop a technique to

estimate the net a for the whole radar field of view (FOV)

using a slope of the ZDR dependence on Z in rain at the

FIG. 1. Names and locations of radars used within the study.
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0.58 antenna tilt. The results of this section further confirm

the need to use a real-time adjusted a to improve R(A)

QPE rather than using a fixed a for the entire precipitation

event. The next section validates this finding by comparing

R(A) estimates utilizing a fixed a [R(A)fix_a] with those

utilizing a real-time adjusted a [R(A)adj_a]. In turn, the

performance of the R(A)-based QPEs algorithm will be

compared to that of the operational dual-pol QPE which

primarily uses the R(Z, ZDR) relation in pure rain and

R(KDP) in regions where hail was likely.

4. Prototype QPE algorithm performance
assessment and case study analysis

a. Performance Assessment of the R(A)adj_a, R(A)fix_a,
and operational dual-pol QPE algorithms

To assess the impact of the variability of a on the per-

formance of the attenuation-based rainfall estimation, we

evaluated two versions of theR(A) algorithm: one version

that generated QPE derived from a estimated and up-

dated for each 0.58 tilt [R(A)adj_a] for the radar FOV

and one that generates QPE assuming a fixed value of

a [R(A)fix_a] for the entirety of the event. The a value set

for theR(A)fix_a QPEwas 0.015dB per degree, the typical

value recommended by Ryzhkov et al. (2014) for conti-

nental precipitation systems. For both of these R(A)

QPEs, we substituted R(A) with R(KDP) whenever Z .

50dBZ to mitigate the risk of contamination by hail.

These twoQPEs are compared to the operational dual-pol

QPE rain totals and performance statistics are generated.

All QPE data were compared to quality controlled

24-h totals from CoCoRaHS and HADS gauge data

from 49 precipitation events east of the Rockies during

the 2014–16 warm seasons.

Figures 2a–c show the resulting scatterplots and the sta-

tistical measures. Nonparametric bootstrap significance

TABLE 2. Event description, 24-h accumulation period, radar name, and the approximate number of severe weather reports within the

radar FOV for the precipitation events used to determine the median value of a for continental rainfall. ‘‘Few’’ represented,4, ‘‘some’’

#10, and ‘‘numerous’’ .10 severe weather reports.

Event type

Date of 24-h period

ending 0700 LST Radar(s) Severe reports

MCS 29 Apr 2014 KMOB Some

MCS 13 May 2014 KFWS Some

Initially supercells then MCS 4 Jun 2014 KOAX Numerous

MCSs 20 Jun 2014 KMPX, KDMX Few

MCSs 5 Jul 2014 KOAX Few

MCS 13 Jul 2014 KILX Some

Initially rain, then MCS 6 May 2015 KTLX Some

Early rain/afternoon supercells 7 May 2015 KTLX Numerous

DecayingMCS then afternoon storms consolidating toMCS 8 Jun 2015 KILX Few

Morning rain; afternoon storms 12 Jun 2015 KDVN Few

MCSs 4 Jul 2015 KGWX Few

Afternoon line of storms 7 Jul 2015 KLOT, KEAX Some

Numerous severe storms 24 Jun 2016 KRLX Numerous

TABLE 1. Event description, 24-h accumulation period, radar name, and the approximate number of severe weather reports within the

radar FOV for the precipitation events used to determine the median value of a for tropical rainfall. ‘‘Few’’ represented,4, ‘‘some’’#10,

and ‘‘numerous’’ .10 severe weather reports; TS and TD refer to tropical storm and tropical depression, respectively.

Event type

Date of 24-h period

ending 0700 LST Radar(s) Severe reports

TS Bill 17 Jun 2015 KHGX, KFWS Few

TD Bill 18 Jun 2015 KFWS None

Rain associated with Hurricane Joaquin and quasi-stationary

upper low

2 Oct 2015 KCAE None

Rain associated with Hurricane Joaquin and quasi-stationary

upper low

3 Oct 2015 KCAE None

Rain associated with Hurricane Joaquin and quasi-stationary

upper low

4 Oct 2015 KCAE, KLTX Few

TS Colin 7 Jun 2016 KTBW Few

Rain associated with westward moving tropical wave 12 Aug 2016 KLIX None

Rain associated with westward moving tropical wave 13 Aug 2016 KLIX None

Hurricane Matthew 8 Oct 2016 KCLX Few
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tests (Efron and Tishirani 1993) were conducted for the

differences in RMSE, MAE, and correlation coefficient

between the three QPE and all were found to be sta-

tistically significant to the 95% confidence level. That is,

the 95% confidence interval of the difference of a given

statistic for the QPE pair being evaluated does not

contain the value zero. A comparison of the R(A)adj_a
(Fig. 2a) performance with that of R(A)fix_a (Fig. 2b) in

terms of 24-h totals shows significant differences in error

and in the radar-to-gauge bias. The latter exhibited

significantly higher (;26%) RMSE and MAE errors

and a 26% larger underestimate bias ratio. Comparisons

of the R(A)adj_a estimates with the operational dual-pol

QPE (Fig. 2c) also show significantly lower (;22%)

RMSE/MAE errors, higher (;5%) correlation coeffi-

cient and 7% better radar-to-gauge bias ratio for the

former. Similar to the scatterplots, the QPE errors as a

function of distance (not shown) indicated that R(A)adj_a
exhibited much less variability and bias thanR(A)fix_a and

the operational dual-pol.

The scatterplots also indicate R(A)adj_a QPE does a

much better job estimating rainfall for gauge totals

. 150mm, that is, the moderate-to-heavy rain events

that produce the most risk for significant flooding. This

is more clearly indicated when viewing a normalized

hit/miss contingency table (Wilks 2006). The 24-h QPE

and gauge totals were divided into five categories: very

light (totals T , 12.7mm), light (12.7 # T , 38.1mm),

moderate (38.1 # T , 101.6mm), heavy (101.6 # T ,
152.4mm), and extreme (T $ 152.6mm). If the QPE

category matched the gauge category data, then the

QPE was considered to have made a good estimate and

was classified as a ‘‘hit,’’ otherwise it was classified as a

‘‘miss.’’ Table 3 showed a summary of the analysis with

FIG. 2. (a) The 24-h accumulations of R(A)adj_a, (b) R(A)fix_a utilizing a fixed a value of 0.015, and (c) the operational dual-pol QPE

as compared to quality controlled gauge data for 49 cases used in the performance evaluation. The letters B, R, MAE, and C stand for

radar-to-gauge bias ratio, RMSE, MAE, and correlation coefficient, respectively.
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the QPE categories shown in the rows and the observed

gauge totals shown in the columns. The data in each

column were normalized by the total number of radar-

to-gauge (R/G) pairs within that category such that it

added up to 1 or, due to round off error, 0.99. The bold

font numbers represent the ratio of hits to all possible

R/G pairs for a category and placed along the diagonal

of the three table blocks. The ratio of misses to all R/G

pairs for a given category is denoted by italicized num-

bers off the diagonal. Both dual-pol and R(A)fix_a had

higher hit rates for the very light rain category. How-

ever, the data show the R(A)adj_a QPE does a signifi-

cantly better job ofmatching the gauge category for light

(0.74), moderate (0.77), heavy (0.48), and extreme (0.78)

precipitation events than bothR(A)fix_a and operational

dual-pol QPEs. This is important as most flash floods

are associated with moderate to extreme precipitation

events. Further, the results confirm the importance of

using a real time estimated a to get the most accurate

R(A) QPE possible. While both QPEs exhibited nearly

the same hit rate for light precipitation, operational

dual-pol outperformed R(A)fix_a for the moderate,

heavy, and extreme categories. With regard to the QPE

performance in very light rain, an analysis (not shown)

of R(A)adj_a and dual-pol indicated both QPEs ex-

hibited an overestimate bias similar to that found in

Cocks et al. (2017). From that study, four QPEs were

examined and each exhibited an overestimate bias ratio

in the very light precipitation category likely due to

impacts caused by evaporation of smaller rain drops.

The use of a lower a (0.015) at all times, which signifi-

cantly lowered rain rates, is likely the reason for the

better R(A)fix_a performance in the VL category.

Figures 3a and 3b show scatterplots of hourly accu-

mulations estimated from R(A)adj_a and operational

dual-pol algorithms versus quality controlled automated

gauge data using a subset of 20 rain events. Although

the results are more subtle due to the smaller accumu-

lation time and the enhanced variability typically found

in hourly accumulations, the scatterplots show the

R(A)adj_a QPE exhibited significantly less variability

and performed better for gauge totals . 40mm. Non-

parametric bootstrap statistical tests also indicated the

differences in RMSE, MAE, and correlation coefficient

are significant with higher correlation/lower error asso-

ciated with the R(A)adj_a QPE.

b. R(A)adj_a QPE performance during a severe
convective storm event

On 3 and 4 June 2014 severe storms occurred over

eastern Nebraska and western Iowa. Associated with

this convective event were numerous severe hail and

wind reports within the Omaha, Nebraska (KOAX),

WSR-88D radar’s FOV. In some cases, hail likely

impacted gauge performance, due to the clogging of

gauge orifices by smaller hailstones, or by possibly

damaging the gauge site itself as hail . 75mm was

reported with this event. The former effect was de-

tectable as a few gauges continued to report low pre-

cipitation totals for three or more hours after rainfall

ended, an effect typically observed during the winter

season a day or two after a winter stormwhen clear skies

prevail (Martinaitis et al. 2015). These effects were miti-

gated by removing any gauges missing hourly reports,

exhibiting erratic performance over the 24-h period and

by comparing hourly and 24-h gauge totals with available

nearby gauges.

While strong sustained winds did not last for as long

of a period as that typically observed in hurricanes,

there were quite a number of peak wind gust mea-

surements . 35.8m s21. There were also a number of

stations that reported heavy rainfall during the event.

Hence, gauge undercatch, due to turbulent wind flow

over the gauge orifice and, for tipping-bucket gauges,

due to the time required for the bucket to tip from one

side to the other, likely impacted gauge totals. Duchon

and Biddle (2010) and Duchon et al. (2014, 2017) noted

that significant gauge undercatch occurred for wind

speeds $ 5m s21 and, for tipping-bucket gauges, rain

rates . 50mm. Comparing gauge accumulations above

ground and within a pit, Sieck et al. (2007) found gauge

undercatch ranged from 2% to 10% for the precipitation

TABLE 3. Column normalized hit/miss matrices for 24-h R(A)adj_a,

R(A)fix_a, and dual-pol QPE totals (in rows) vs observed 24-h gauge

totals (in columns). Precipitation categories shown were for very light

(VL), light (L), moderate (M), heavy (H), and extreme (E) 24-h gauge

totals. Values along the diagonal (bold font) meant the QPE category

matched the gauge category and were considered hits. Values off

the diagonal (italic font) were considered misses and indicated the

types of misclassifications made.

QPE product VL L M H E

R(A)adj_a VL 0.79 0.09

L 0.21 0.74 0.18

M 0.16 0.77 0.45 0.03

H 0.05 0.48 0.19

E 0.07 0.78

R(A)fix_a VL 0.90 0.25 0.01

L 0.10 0.69 0.41 0.02

M 0.06 0.57 0.87 0.16

H 0.01 0.11 0.48

E 0.36

Dual-pol VL 0.83 0.14

L 0.17 0.68 0.23 0.01

M 0.18 0.71 0.59 0.20

H 0.05 0.38 0.31

E 0.02 0.49
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events accompanied by winds of generally #6m s21.

However, Duchon and Essenberg (2001) noted that for

one rainfall event they measured gauge undercatch of

12%–15% during a period where winds were 12.5m s21

and the rain rate was 200mmh21.

We examined time series of the hourly median

R(A)adj_a and dual-pol QPE errors using quality con-

trolled automated gauges within 120km. Further, due

to the number of high wind reports during this precipi-

tation event, it is of interest to examine median hourly

QPE errors calculated using not only the reported

gauge totals but also using gauge totals adjusted for

undercatch due to strong winds. During this convective

event, strong winds were sporadically present with the

gauge undercatch likely between 5% and 10%. As a

simplification, a gauge undercatch of 10%was assumed

for all the hourly gauges used in the time series as this

would potentially lower and increase the dual-pol and

R(A)adj_a errors, respectively. That is, 10% was added

to the gauge totals which in turn were compared to the

QPE for each hour. The authors fully recognize that

some gauges could have experienced a higher (par-

ticularly near intense convective cores) or a lower

percentage of wind undercatch. However, this exer-

cise provides an idea of the impacts the wind under-

catch could have on QPE errors. The QPE errors, with

(dashed line) and without (solid line) wind undercatch

taken into account, are shown in Fig. 4 for the period

between 2200 and 0900 UTC. It is clear that the me-

dian QPE error each hour, regardless of gauge un-

dercatch, is lower for R(A)adj_a. Figure 5 illustrates

the R(A)adj_a and dual-pol QPEs performance when

compared to 24-h gauge totals for this event. Both

Figs. 4 and 5 show that dual-pol QPE exhibits a

significant overestimate bias ratio and higher errors

than the R(A)adj_a QPE. While KOAX ZDR appeared

to be fairly well calibrated, Z on average was 1.0–

1.5 dBZ higher than neighboring radars. Such positive

bias might be partially contributing to the rainfall

overestimation by the dual-pol algorithm which utilizes

the R(Z, ZDR) and R(Z) rain rate relations. It is impor-

tant that miscalibration ofZ andZDR does not affect the

R(A)adj_aQPEperformance. Overall, the newR(A)adj_a
QPE algorithm did very well during this event on both

an hourly and 24-hourly time scale.

c. R(A)adj_a performance during Hurricane Matthew

While the peak winds during Hurricane Matthew

were somewhat comparable to the severe convective

storm case previously evaluated, sustained wind speeds

were higher formuch longer periods of time over a wider

area within the Charleston, South Carolina (KCLX), ra-

dar FOV. Hence, gauge undercatch due to strong winds

was more widespread and very likely higher than in the

severe convective storm case in Nebraska. Hourly wind

observations, as shown in Figs. 6a–c, confirmed the

presence of strong winds across much of the KCLX ra-

dar FOV during the evening and morning hours of 7 and

8 October. Figure 6d shows a time series of the cu-

mulative gauge and R(A) QPE totals as well as sus-

tained wind and hourly peak gust, measured by the

Savannah, Georgia (KSAV), Automated Surface

Observation System (ASOS) near the Georgia coast.

Time series indicate that sustained winds (wind gusts)

of ;11–17m s21 (15–28m s21) coincided with moder-

ate to heavy rainfall between 2100 and 0800 UTC.

During this period, the difference between the

R(A)adj_a QPE estimate and the KSAV gauge total

FIG. 3. (a) The 1-h accumulations of R(A)adj_a and (b) the operational dual-pol QPE compared to quality controlled gauge data for 20 of

the 49 cases used in the performance evaluation. The legend is the same as in Fig. 2.
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increased significantly. While there were also other fac-

tors impacting R(A)adj_a errors, gauge undercatch was a

prominent factor that should be taken into account.

In a manner similar to what was done previously, a

time series of QPE errors with 10% (dashed line), 15%

(dotted line), and without (solid line) wind undercatch

taken into account are shown in Fig. 7 for the period

between 1800 UTC 7October and 1200 UTC 8October.

The R(A)adj_a QPE exhibited significant overestimates,

particularly between 0200 and 0900UTC, while dual-pol

exhibited significant underestimates during the same

period. The overall median QPE error for the period is

1.52 and 22.29mm for R(A)adj_a and dual-pol, respec-

tively. From Fig. 7, it is clear that if gauge totals were

adjusted for a potential undercatch of 10% or 15%

(dashed and dotted lines) then the dual-pol error would

significantly increase while the R(A)adj_a error would

decrease. This indicated that the R(A)adj_a QPE quite

likely performed better at the hourly time scale than

initially indicated using gauge totals that were not taking

into account gauge undercatch.

Figures 8a–d illustrate the R(A)adj_a and dual-pol

performance for 24-h gauge total estimation with and

without adjustments made for at least 10% percent

gauge undercatch across the KCLX FOV. Similar to

Fig. 6, R(A)adj_a QPE exhibits significantly lower

(;17%) RMSE and MAE errors than dual-pol for

gauge totals not adjusted for undercatch (Figs. 8a,b).

The overall RMSE and MAE for the R(A)adj_a QPE

decrease while that of dual-pol increase when the

24-h gauge totals are adjusted for 10% undercatch

(Figs. 8c,d). As expected, the largest R(A)adj_a QPE

overestimates were for gauge totals . 225mm and

were generally along the coastline where winds were

stronger and undercatch likely higher than 10%.

Overall, the analysis strongly suggested R(A)adj_a QPE

quite likely performed better if gauge undercatch is

taken into account.

FIG. 4. Time series of hourly QPE 2 gauge errors during a continental precipitation event occurring within the

KOAX FOV on 3 and 4 Jun 2014. Red (blue) lines represent dual-pol [R(A)adj_a] errors without (solid) and with

10% (dashed) gauge undercatch simulated (see legend annotated on the graph).

FIG. 5. (a) The R(A)adj_a and (b) operational dual-pol QPE as compared to quality controlled gauge totals using data from the KOAX

radar for the 24-h period ending at 1200 UTC 4 Jun 2014. The legend is the same as in Fig. 2.
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While there is an improvement for the larger R(A)adj_a
QPE overestimates for 24-h gauge totals . 225mm,

assuming a undercatch of 10%, 15%, or even 20%

(which is not shown), it is still not enough to account for

the total overestimate bias, ;30%, observed along the

coast. Instead, we believe that another (and probablymore

important) error source is the use of a single net a being

applied indiscriminantly to the convective bands and

stratiform rain areas of the storm. As discussed earlier, the

R(A) QPE generated with the prototype algorithm uses a

net a derived from the Z–ZDR pairs for the entire radar

FOV below the melting layer. As explained in Part I,

the use of a single net value of a in convective bands

characterized by higher Z and ZDR and stratiform areas

with lowerZ andZDR inevitably leads to overestimation of

heavy rain and underestimation of lighter rain (see Fig. 2

FIG. 6. Synoptic surface observations for (a) 0207, (b) 0607, and (c) 1007 UTC and (d) the 24-h time series of

sustained wind/wind gusts, R(A)adj_a, QPE, and gauge cumulative totals for the KSAV ASOS site for 7 and 8 Oct

2016. The large black dot and black dashed circle with yellow shading in (a)–(c) denote the approximate location of

the KCLX radar and KSAV ASOS location, respectively. For (d), R2, R, and R1 refer to light, moderate, and

heavy rain, respectively, as reported by KSAV; the rest of the legend is provided on the image.

FIG. 7. Time series of hourly QPE 2 gauge errors during a tropical precipitation event occurring within the

KCLX FOV on 7 and 8 Oct 2016. Red (blue) lines represent dual-pol [R(A)adj_a] errors without (solid) and with

10% (dashed) and 15% (dotted) gauge undercatch simulated (see legend annotated on the graph).

MAY 2019 COCKS ET AL . 1007

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/20/5/999/4844384/jhm

-d-18-0070_1.pdf by N
O

AA C
entral Library user on 11 August 2020



in Part I). This is also illustrated in a conceptual plot in

Fig. 9. Across the coastal regions with stronger rainbands

and eyewall convection, the ‘‘true’’ local value of a is likely

lower than the net value a0 for the whole FOV and the use

of a0 may result in rainfall overestimation there.

Another possible source of error is contamination from

the melting layer. The R(A)adj_a QPE overestimates

seen in Fig. 8a for gauge totals, 100mm and associated

with locations in an arc west-southwest through north-

northeast of the radar at distances . 100km might be

caused by such contamination due to an improperly di-

agnosed melting layer. Figure 10a shows the location of

these areas of overestimation (clustered in the shape of

a crescent and indicated by blue bubbles) with respect

to the radar. The accompanying digital hybrid scans

of reflectivity Z and cross-correlation coefficient rhv

are displayed in Figs. 10b–d for 0300 and 0600 UTC

8 October 2016. Model sounding data suggest specific

attenuation based rain estimates can be made out to

190 km from the radar. Yet, the rhv data clearly indi-

cate that the area of melting layer contamination is

significantly closer (at 150 km) to the radar from ap-

proximately 2408–3608 azimuth and antenna elevation

0.58. Model reruns utilizing the lower melting layer

bottom, indicated by the rhv data, reduce errors by 11%.

Most of the overestimate bias bubbles (the cool colored

circles in Fig. 10a) were located within or just below the

melting layer as indicated by the rhv data. Overall,

contamination from the melting layer alone does not

account for the entire overestimation errors observed; it

is its combination with gauge undercatch and the use of

an unrepresentative a in convective rainbands that might

FIG. 8. (a),(c) Scatterplots of R(A)adj_a and (b),(d) dual-pol QPE vs (top) reported and (bottom) adjusted gauge totals for the 24-h

period ending at 1100 UTC 8 Oct 2016. The adjusted gauge totals were created by adding 10% to the observed total to simulate gauge

undercatch of 10% for the radar field of view. The legend is the same as in Fig. 2.
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be responsible for the positive QPE bias. However, this

particular case example illustrates the importance of ac-

curate detection of the three-dimensional melting layer

structure. In a future, more sophisticated approach for

determining melting layer structure utilizing rhv and

two-dimensional numerical model data will be explored

in a more advanced version of the algorithm that is cur-

rently under development. Despite all these challenges,

the R(A)adj_a QPE performed better than the opera-

tional dual-pol QPE during Hurricane Matthew.

FIG. 9. Illustration of ZDR and a variability in stratiform and convective rainfall for a con-

ceptual hurricane within the radar FOV. In general, if both precipitation regimes are within the

FOV, then the net a may be too high for convective cells and too low in stratiform rain.

FIG. 10. (a) The 24-h R(A)adj_a QPE/gauge bias bubble image for the 24-h period ending 1100 UTC 8 Oct 2016; (b),(c) digital hybrid

scan reflectivity (DHR) and (d),(e) rhv for 0300 and 0600 UTC 8 Oct 2016. The arrows in (d) and (e) denote approximate distances the

melting layer bottom is from the radar. Only gauge bias bubbles with distance . 120 km are shown in (a). Per standard procedure for

WSR-88D radars, DHR and rhv data are extended out to 230 and 300 km, respectively.
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d. R(A)adj_a performance in the case of a poorly
calibrated radar

Between 10 and 13 August 2016, a slow westward

moving tropical wave produced very heavy rainfall over

the central U.S. Gulf Coast. In particular, catastrophic

flooding occurred over the central and southern por-

tions of the state of Louisiana during this period as a

result of the copious amounts of rainfall. The 24-h pe-

riod evaluated here ended at 1200 UTC 12 August 2016

with radar data collected from the WSR-88D radar in

New Orleans, Louisiana (KLIX). During this period,

radar reflectivity and differential reflectivity cross-

section comparisons (Gourley et al. 2003) with neigh-

boring radars indicated KLIX Z and ZDR were biased

by ;0.75 dBZ and 21.25 dB respectively. The severely

biased ZDR, while unusual, strongly impacted the per-

formance of the dual-pol QPE algorithm which relies

on accurate measurements of Z and ZDR. Negatively

biased ZDR would significantly increase rainfall rates

made by the dual-polQPE algorithm (Cocks et al. 2016).

Figure 11 shows the scatterplots of 24-h accumulations

ofR(A)adj_a and dual-pol QPEs versus quality controlled

gauges. As expected, the dual-pol QPE exhibited very

large errors and a radar-to-gauge bias ratio . 2.5. De-

spite the severely miscalibratedZDR, theR(A)adj_aQPE

exhibited errors that aremuch lower than dual-pol QPE.

This illustrates that the ZDR bias did not impact the

estimate of theZDR slope, and, therefore of the factor a.

Modest overestimation of rainfall by the R(A)adj_a QPE

algorithm might be attributed to the use of a single a for

the whole radar coverage area and, possibly, to the

tipping-bucket gauge undercatch (primarily due to the

time required for the bucket to tip) as explained earlier.

e. Example of R(A)adj_a performance in regions of
partial blockage

Figure 12 shows the maps of 24-h rain accumulations

estimated from the dual-pol QPE and R(A)adj_a QPE in

areas of partial beam blockage around the Columbus

Air Force Base, Mississippi (KGWX), Wilmington,

North Carolina (KLTX), and Columbia, South Carolina

(KCAE), radars. Most of the blockages are due to the

presence of tall trees growing very close to the radar.

These are not accounted for in digital elevation maps

routinely used for blockage correction. In each case, the

new R(A)adj_a QPE generally did a better job filling in

the partial blockages than the dual-pol QPE algorithm

despite the fact the prototype algorithm only used data

from the 0.58 elevation tilt. The one exception to this is

shown in Figs. 12c and 12d where the dual-pol QPE al-

gorithm better filled the partial beam blockage sector

southwest of the KLTX radar. The reason for this was

the dual-pol algorithm utilized a higher elevation tilt

to estimate QPE in this region, likely set up by the local

forecast office. Otherwise, in the other partial blockage

regions the R(A) QPE performed better by filling in

partial beam blockage sector. Figures 13a and 13b

display the 24-h QPE versus gauge scatterplots for

the partial blockage region around the KCAE radar

(Figs. 12e,f). Within the partial blockage region, the

R(A)adj_a QPE exhibits a much better (0.97) gauge to

radar bias ratio with .40% lower errors.

5. Summary and conclusions

This paper is the second of two documenting the de-

velopment and validation of a prototype QPE algorithm

FIG. 11. (a) The R(A)adj_a and (b) operational dual-pol QPE as compared to quality controlled gauge totals using data from the KLIX

radar for the 24-h period ending at 1200 UTC 12 Aug 2016. The legend is the same as in Fig. 2.
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utilizing specific attenuation that was based upon the

work of Ryzhkov et al. (2014), Wang et al. (2014), and

Part I. A large dataset comprising 49 precipitation events

east of the Rocky Mountains from the 2014 through

2016warm seasons was used to validate the performance

of the two versions of the R(A) algorithm: with fixed

and variable factor a 5 A/KDP used in computation of

specific attenuation A. The statistics of a for different

rain types was examined in the course of the study.

The median value of a during tropical and continental

precipitation regimes was determined from the analysis

of 9 tropical and 13 continental precipitation events. The

median a for tropical (continental) rain regimes was

found to have values of 0.028 (0.018) dB per degree. The

reason for the differences is because for tropical rain A

is high but KDP is low due to the abundance of small

drops having a nearly spherical shape.

This paper also demonstrated the importance of using

a real time estimated a as opposed to assuming a fixed

valuewhen estimating precipitation via specific attenuation.

FIG. 12. (a),(c),(e) The 24-h accumulations of dual-pol and (b),(d),(f) R(A)adj_a QPE in regions of partial

blockage around the (top) KGWX, (middle) KLTX, and (bottom) KCAE radars for 24-h accumulations ending at

the time labeled in each panel.
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QPEderivedusing afixeda of 0.015dBper degree,R(A)fix_

a, exhibited significantly higher standard errors and a larger

bias thanQPE derived using factor a updated every 0.58 tilt
[R(A)adj_a]. Further, comparison of theR(A)adj_aQPEwith

the operational dual-pol QPE estimates indicated the for-

mer had lower errors, less variability, and exhibited signifi-

cantly better estimates for moderate-to-heavy precipitation

events (with gauge totals. 150mm).

The new QPE performance was more closely exam-

ined for three precipitation events: a severe convective

storm event over the Great Plains, Hurricane Matthew

impacting the Georgia/Carolina coasts, and a tropical

wave affecting the central Gulf Coast where ZDR

was poorly calibrated. In each case, the R(A)adj_a QPE

performed better than the operational dual-pol QPE,

especially for the higher rainfall totals. Calibration chal-

lenges were present for two of the cases, the most note-

worthy was the severely biased ZDR in the tropical wave

example. As long as theZ andZDR biases affect the entire

radar FOV, then the estimation of the parametera, critical

for path integrated attenuation calculations, is not affected.

Statistical analysis of the comparative performance of the

R(A)adj and the dual-pol QPE algorithm currently im-

plemented on the WSR-88D radar network indicates ob-

vious advantages of the attenuation-based methodology.

Occasional overestimation of rainfall with R(A)adj_a
QPE is likely attributed to the use of a single value of

net a indiscriminantly in the areas of convective and

stratiform rain. Another possible reason for positive

QPE bias is contamination by the melting layer if its

height is not correctly determined. Future work will

further reduce the melting layer contamination through

the use of model data and cross-correlation coefficient

data to refine the melting layer height. Finally, com-

parisons of the R(A)adj_a estimates to dual-pol QPE

within regions of partial beam blockage showed the

former is much more efficient in filling the gaps caused

by trees growing very close to the radar. For one of those

cases, a comparison of the two QPEs to gauge data

showed the R(A)adj_a 1 R(KDP) exhibited significantly

lower error and bias than the operational dual-pol QPE

despite the former using only the lowest tilt.

Currently the Radar Operations Center is testing the

new R(A) QPE algorithm for operational use on the

WSR-88D network. Further, the new QPE algorithm is

now the foundation of a developmental MRMS QPE

product that utilizes R(A) precipitation estimates below

the melting layer, R(KDP) estimates where hail likely

and R(Z) within and above the melting layer as initially

described by Zhang et al. (2017).
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